
PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. (a) Denote the normal-form game below by G. Solve G by iterated elimination of strictly
dominated strategies. Explain briefly each step (1 sentence).

Player 1

Player 2
t1 t2 t3

s1 2, 6 3, 6 3, 2
s2 1, 4 4, 4 0, 5
s3 3, 2 5, 1 1, 1
s4 4, 4 2, 1 4, 0

Solution: s2 is dominated by s3. After eliminating s2, then t3 is dominated by t1.
After eliminating t3, then s1 is dominated by s3. After eliminating s1, then t2 is
dominated by t1. After eliminating t2, then s3 is dominated by s4. Solution: (s4, t1).

(b) Suppose we repeat G twice. Denote the resulting game by G(2). Find the set of
Subgame-perfect Nash Equilibria of G(2). Be careful to write out the equilibrium
strategies.
Solution: Since there is a unique outcome of the iterated elimination of strictly dom-
inated strategies, this is the unique NE. Hence, it must be played in every subgame
of the finitely repeated game. SPNE = {(play (s4, t1) in every subgame)}.

(c) How would we have to modify the payoffs in G to make it possible that there exists
a Subgame-perfect Nash Equilibrium in which an action profile which is not a stage-
game NE is played in one of the stages in G(2)? Explain this intuitively or give an
example of a change in the payoffs.
Solution: There would have to be at least two stage-game NE.

2. Consider the game below, where sender observes nature’s choice of t, and chooses the
message A or B. Receiver does not observe t, but observes player 1’s choice of message
and chooses a or b.

(a) Is this a cheap talk game? Is it a game of coordination or conflict? Explain your
answers.
Solution: This is a cheap talk game (payoffs depend only on type t and receiver’s
action, not on sender’s message). It is a game of coordination, since both players
want the same action to be taken in each state.
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(b) Find a separating Perfect Bayesian Equilibrium.
Solution: Any of the following are separating PBE: {(AB, ab; p = 1, q = 0), (BA, ba; p =
0, q = 1)}.

(c) Find a pooling Perfect Bayesian Equilibrium in which the sender always sends the
message A.
Solution: If sender always sends the message A, Bayes’ Rule yields p = 1/2, and
receiver will then take the action b (expected payoff 1

2(0) + 1
2(3) versus 1

2(1) + 1
2(1)).

Playing A will be optimal for sender if receiver also plays b after observing B (since
otherwise, type tA would deviate). The receiver will play b after observing B if

q(0) + (1− q)(3) ≥ q(1) + (1− q)(1)⇔ q ≤ 2
3 .

Thus, the PBE is (AA, bb; p = 1/2, q ≤ 2/3).
(d) Compare the payoffs in the two equilibria you found in parts (b) and (c): does one

equilibrium Pareto dominate the other?
Solution: The separating equilibrium always gives the highest possible payoff to
both players, whereas the pooling equilibrium does not (when the type is tA). Thus,
the separating equilibrium Pareto dominates the pooling equilibrium.

(e) Do the equilibria satisfy SR6 (equilibrium domination)?
Solution: Yes. The separating equilibrium satisfies SR6 since there are no out-
of-equilibrium beliefs. The pooling equilibrium because there is no equilibrium-
dominated action for any of the two types.

3. Consider a first-price sealed bid auction with two bidders, who have valuations v1 and v2,
respectively. For i = 1, 2, these values are distributed independently and uniformly with

vi ∼ u(2, 4).

Thus, the values are private.
Show that there is a symmetric Bayesian Nash Equilibrium in linear strategies: bi(vi) =
cvi + d, i = 1, 2. Find c and d.

Solution. Recall that P
(
bi−d
c > vj

)
=

bi−d

c
−2

4−2 = bi−d−2c
2c . We follow the procedure seen in

the lecture. Assume that bidder j follows his proposed equilibrium strategy bj(vj) = cvj+d.
Then calculate the expected payoff to i from bidding bi:

E[ui(bi, vi)] = P(i wins|bi)(vi − bi)
= P(bi > bj(vj))(vi − bi)
= P(bi > cvj + d)(vi − bi)

= P
(
bi − d
c

> vj

)
(vi − bi)

Thus
E[ui(bi, vi)] = bi − d− 2c

2c (vi − bi).

Take the first-order condition
1
2c [(vi − 2bi) + (d+ 2c)] = 0.

Easy to check SOC. Hence, best response is

bi(vi) = 1
2vi + 1

2(d+ 2c).
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Therefore, c∗ = 1
2 and d∗ = 1

2(d∗ + 2c∗) = 1
2(d∗ + 1), which solves for d∗ = 1. I.e.

b∗
i (vi) = 1

2vi + 1.

4. Consider the following version of Spence’s education signaling model, where a firm is hiring
a worker. The worker is characterized by his type θ, which measures his ability. There are
two worker types: θ ∈ {θL, θH}. Nature chooses the worker’s type, with P(θ = θH) = p
and P(θ = θL) = 1− p. The worker observes his own type, but the firm does not observe
the worker’s type.
The worker can choose his level of education: e ∈ R+. The cost to him of acquiring this
education is

cθ(e) = 2 · e
2

θ
.

Education is observed by the firm, who then forms beliefs about the worker’s type: µ(θ|e).
We assume that the marginal productivity of a worker is equal to his ability, and that the
company is in competition such that it pays the expected marginal productivity:

w(e) = E(θ|e).

Thus, the payoff to a worker conditional on his type and education is

uθ(e) = w(e)− cθ(e).

Suppose for this exercise that θH = 6 and θL = 2.

(a) Show that there is a separating pure strategy Perfect Bayesian Equilibrium where the
low-ability worker chooses e∗

L = 0 and the high-ability worker chooses e∗
H = 2. You

can use the off-equilibrium-path beliefs µ(θH |e) = 0 if e /∈ {e∗
L, e

∗
H}.

Solution: Given the beliefs, w(e) = 2 for all e 6= 2 and w(2) = 6. Thus, all e /∈ {0, 2}
are strictly dominated by e = 0, and will never be chosen in equilibrium. We therefore
restrict attention to e ∈ {0, 2}. Notice uL(0) = 2 and uL(2) = 6 − 222

2 = 2. Thus,
the low-ability type is indifferent between e = 0 and e = 2. On the other hand,
uH(2) = 6 − 222

6 = 14
3 and uH(0) = 2, so the high-ability type strictly prefers e = 2

over e = 0. Thus, e∗
L = 0 and e∗

H = 2 together with the specified beliefs is a PBE.
(b) Find a pooling pure strategy Perfect Bayesian Equilibrium, where both worker types

choose the same education level ep > 0. What is the value of ep in this pooling
equilibrium? Give some intuition as to whether or not this pooling equilibrium is
unique.
Solution: On the equilibrium path µ(θH |ep) = p. The off-the-equilibrium path
beliefs that give the least incentives to deviate are µ(θH |e) = 0 if e 6= ep. Thus,
w(ep) = 6p + (1 − p)2 = 2 + 4p and w(e) = 2 otherwise. Again, all e /∈ {0, ep} are
strictly dominated by e = 0, and will never be chosen in equilibrium. We therefore
restrict attention to e ∈ {0, ep}. First, we find the ep such that the low-ability
worker prefers e = ep to e = 0: uL(ep) ≥ uL(0) ⇔ 2 + 4p − 2 e

2
p

2 ≥ 2 ⇒ ep ≤ 2√p.
Similarly, we find the ep such that the high-ability worker prefers e = ep to e = 0:
uH(ep) ≥ uH(0) ⇔ 2 + 4p − 2 e

2
p

6 ≥ 2 ⇒ ep ≤ 2
√

3p. Thus, e∗
L = e∗

H ≤ 2√p together
with the specified beliefs is a PBE.
As shown above, the pooling equilibrium is clearly not unique. Any level of pooling
that is not too high can be an equilibrium. They key is that a deviator will be
‘punished’ by a lower wage, which will assure that all types stick to the equilibrium
strategy.
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