PLEASE ANSWER ALL QUESTIONS. PLEASE EXPLAIN YOUR ANSWERS.

1. (a) Denote the normal-form game below by G. Solve G by iterated elimination of strictly dominated strategies. Explain briefly each step (1 sentence).

Player 1		Player 2		
		t_{1}	t_{2}	t_{3}
	s_{1}	2,6	3,6	3,2
	s_{2}	1,4	4,4	0,5
	s_{3}	3,2	5,1	1,1
	s_{4}	4,4	2,1	4,0

Solution: s_{2} is dominated by s_{3}. After eliminating s_{2}, then t_{3} is dominated by t_{1}. After eliminating t_{3}, then s_{1} is dominated by s_{3}. After eliminating s_{1}, then t_{2} is dominated by t_{1}. After eliminating t_{2}, then s_{3} is dominated by s_{4}. Solution: $\left(s_{4}, t_{1}\right)$.
(b) Suppose we repeat G twice. Denote the resulting game by $G(2)$. Find the set of Subgame-perfect Nash Equilibria of $G(2)$. Be careful to write out the equilibrium strategies.
Solution: Since there is a unique outcome of the iterated elimination of strictly dominated strategies, this is the unique NE. Hence, it must be played in every subgame of the finitely repeated game. $S P N E=\left\{\left(\right.\right.$ play $\left(s_{4}, t_{1}\right)$ in every subgame $\left.)\right\}$.
(c) How would we have to modify the payoffs in G to make it possible that there exists a Subgame-perfect Nash Equilibrium in which an action profile which is not a stagegame NE is played in one of the stages in $G(2)$? Explain this intuitively or give an example of a change in the payoffs.
Solution: There would have to be at least two stage-game NE.
2. Consider the game below, where sender observes nature's choice of t, and chooses the message A or B. Receiver does not observe t, but observes player 1's choice of message and chooses a or b.

(a) Is this a cheap talk game? Is it a game of coordination or conflict? Explain your answers.
Solution: This is a cheap talk game (payoffs depend only on type t and receiver's action, not on sender's message). It is a game of coordination, since both players want the same action to be taken in each state.
(b) Find a separating Perfect Bayesian Equilibrium.

Solution: Any of the following are separating PBE: $\{(A B, a b ; p=1, q=0),(B A, b a ; p=$ $0, q=1)\}$.
(c) Find a pooling Perfect Bayesian Equilibrium in which the sender always sends the message A.
Solution: If sender always sends the message A, Bayes' Rule yields $p=1 / 2$, and receiver will then take the action b (expected payoff $\frac{1}{2}(0)+\frac{1}{2}(3)$ versus $\frac{1}{2}(1)+\frac{1}{2}(1)$). Playing A will be optimal for sender if receiver also plays b after observing B (since otherwise, type t_{A} would deviate). The receiver will play b after observing B if

$$
q(0)+(1-q)(3) \geq q(1)+(1-q)(1) \Leftrightarrow q \leq \frac{2}{3} .
$$

Thus, the PBE is $(A A, b b ; p=1 / 2, q \leq 2 / 3)$.
(d) Compare the payoffs in the two equilibria you found in parts (b) and (c): does one equilibrium Pareto dominate the other?
Solution: The separating equilibrium always gives the highest possible payoff to both players, whereas the pooling equilibrium does not (when the type is t_{A}). Thus, the separating equilibrium Pareto dominates the pooling equilibrium.
(e) Do the equilibria satisfy SR6 (equilibrium domination)?

Solution: Yes. The separating equilibrium satisfies SR6 since there are no out-of-equilibrium beliefs. The pooling equilibrium because there is no equilibriumdominated action for any of the two types.
3. Consider a first-price sealed bid auction with two bidders, who have valuations v_{1} and v_{2}, respectively. For $i=1,2$, these values are distributed independently and uniformly with

$$
v_{i} \sim u(2,4)
$$

Thus, the values are private.
Show that there is a symmetric Bayesian Nash Equilibrium in linear strategies: $b_{i}\left(v_{i}\right)=$ $c v_{i}+d, i=1,2$. Find c and d.
Solution. Recall that $\mathbb{P}\left(\frac{b_{i}-d}{c}>v_{j}\right)=\frac{\frac{b_{i}-d}{c}-2}{4-2}=\frac{b_{i}-d-2 c}{2 c}$. We follow the procedure seen in the lecture. Assume that bidder j follows his proposed equilibrium strategy $b_{j}\left(v_{j}\right)=c v_{j}+d$. Then calculate the expected payoff to i from bidding b_{i} :

$$
\begin{aligned}
\mathbb{E}\left[u_{i}\left(b_{i}, v_{i}\right)\right] & =\mathbb{P}\left(i \text { wins } \mid b_{i}\right)\left(v_{i}-b_{i}\right) \\
& =\mathbb{P}\left(b_{i}>b_{j}\left(v_{j}\right)\right)\left(v_{i}-b_{i}\right) \\
& =\mathbb{P}\left(b_{i}>c v_{j}+d\right)\left(v_{i}-b_{i}\right) \\
& =\mathbb{P}\left(\frac{b_{i}-d}{c}>v_{j}\right)\left(v_{i}-b_{i}\right)
\end{aligned}
$$

Thus

$$
\mathbb{E}\left[u_{i}\left(b_{i}, v_{i}\right)\right]=\frac{b_{i}-d-2 c}{2 c}\left(v_{i}-b_{i}\right) .
$$

Take the first-order condition

$$
\frac{1}{2 c}\left[\left(v_{i}-2 b_{i}\right)+(d+2 c)\right]=0 .
$$

Easy to check SOC. Hence, best response is

$$
b_{i}\left(v_{i}\right)=\frac{1}{2} v_{i}+\frac{1}{2}(d+2 c) .
$$

Therefore, $c^{*}=\frac{1}{2}$ and $d^{*}=\frac{1}{2}\left(d^{*}+2 c^{*}\right)=\frac{1}{2}\left(d^{*}+1\right)$, which solves for $d^{*}=1$. I.e. $b_{i}^{*}\left(v_{i}\right)=\frac{1}{2} v_{i}+1$.
4. Consider the following version of Spence's education signaling model, where a firm is hiring a worker. The worker is characterized by his type θ, which measures his ability. There are two worker types: $\theta \in\left\{\theta_{L}, \theta_{H}\right\}$. Nature chooses the worker's type, with $\mathbb{P}\left(\theta=\theta_{H}\right)=p$ and $\mathbb{P}\left(\theta=\theta_{L}\right)=1-p$. The worker observes his own type, but the firm does not observe the worker's type.
The worker can choose his level of education: $e \in \mathbb{R}^{+}$. The cost to him of acquiring this education is

$$
c_{\theta}(e)=2 \cdot \frac{e^{2}}{\theta}
$$

Education is observed by the firm, who then forms beliefs about the worker's type: $\mu(\theta \mid e)$. We assume that the marginal productivity of a worker is equal to his ability, and that the company is in competition such that it pays the expected marginal productivity:

$$
w(e)=\mathbb{E}(\theta \mid e)
$$

Thus, the payoff to a worker conditional on his type and education is

$$
u_{\theta}(e)=w(e)-c_{\theta}(e)
$$

Suppose for this exercise that $\theta_{H}=6$ and $\theta_{L}=2$.
(a) Show that there is a separating pure strategy Perfect Bayesian Equilibrium where the low-ability worker chooses $e_{L}^{*}=0$ and the high-ability worker chooses $e_{H}^{*}=2$. You can use the off-equilibrium-path beliefs $\mu\left(\theta_{H} \mid e\right)=0$ if $e \notin\left\{e_{L}^{*}, e_{H}^{*}\right\}$.
Solution: Given the beliefs, $w(e)=2$ for all $e \neq 2$ and $w(2)=6$. Thus, all $e \notin\{0,2\}$ are strictly dominated by $e=0$, and will never be chosen in equilibrium. We therefore restrict attention to $e \in\{0,2\}$. Notice $u_{L}(0)=2$ and $u_{L}(2)=6-2 \frac{2^{2}}{2}=2$. Thus, the low-ability type is indifferent between $e=0$ and $e=2$. On the other hand, $u_{H}(2)=6-2 \frac{2^{2}}{6}=\frac{14}{3}$ and $u_{H}(0)=2$, so the high-ability type strictly prefers $e=2$ over $e=0$. Thus, $e_{L}^{*}=0$ and $e_{H}^{*}=2$ together with the specified beliefs is a PBE.
(b) Find a pooling pure strategy Perfect Bayesian Equilibrium, where both worker types choose the same education level $e_{p}>0$. What is the value of e_{p} in this pooling equilibrium? Give some intuition as to whether or not this pooling equilibrium is unique.
Solution: On the equilibrium path $\mu\left(\theta_{H} \mid e_{p}\right)=p$. The off-the-equilibrium path beliefs that give the least incentives to deviate are $\mu\left(\theta_{H} \mid e\right)=0$ if $e \neq e_{p}$. Thus, $w\left(e_{p}\right)=6 p+(1-p) 2=2+4 p$ and $w(e)=2$ otherwise. Again, all $e \notin\left\{0, e_{p}\right\}$ are strictly dominated by $e=0$, and will never be chosen in equilibrium. We therefore restrict attention to $e \in\left\{0, e_{p}\right\}$. First, we find the e_{p} such that the low-ability worker prefers $e=e_{p}$ to $e=0: u_{L}\left(e_{p}\right) \geq u_{L}(0) \Leftrightarrow 2+4 p-2 \frac{e_{p}^{2}}{2} \geq 2 \Rightarrow e_{p} \leq 2 \sqrt{p}$. Similarly, we find the e_{p} such that the high-ability worker prefers $e=e_{p}$ to $e=0$: $u_{H}\left(e_{p}\right) \geq u_{H}(0) \Leftrightarrow 2+4 p-2 \frac{e_{p}^{2}}{6} \geq 2 \Rightarrow e_{p} \leq 2 \sqrt{3 p}$. Thus, $e_{L}^{*}=e_{H}^{*} \leq 2 \sqrt{p}$ together with the specified beliefs is a PBE.
As shown above, the pooling equilibrium is clearly not unique. Any level of pooling that is not too high can be an equilibrium. They key is that a deviator will be 'punished' by a lower wage, which will assure that all types stick to the equilibrium strategy.

